Interval Scripts: a Design Paradigm
for Story-Based Interactive Systems

Claudio S. Pinhanez *
MIT Media Laboratory
20 Ames St. — E15-368C
Cambridge MA 02139 — USA
+1 617 253 0335

pinhanez@media.mit.edu

ABSTRACT

A system to manage human inleraction in lmmersive
environments was designed and implemented. The in-
teraction is defined by an nterval script which describes
the relationships between the time intervals which com-
mand actuators or gather information from sensors.
With this formalism, reactive, linear, and tree-like in-
teraction can be equally described, as well as less regu-
lar story and interaction patterns. Control of actuators
and sensors is accomplished using PNF-restriction, a cal-
culus which propagates the sensed information through
the interval script, determining which intervals are or
should be happening at each moment. The prototype
was used in an immersive, story-based interactive envi-
ronment called SingSong, where a user or a performer
tries to conduct four computer character singers, in spite
of the hostility of one of them.

Keywords

Interaction design, story-based immersive systems, tem-
poral scripts.

INTRODUCTION

The objective of this rescarch is the design and imple-
mentation of an interaction manager system which is
able to handle complex patterns of interaction evolv-
ing through time. The interaction manager should be
able to track multiple concurrent stories, turned on or
off according to the development of the story and the
users’ actions. For example, the user or users can be
interacting with a virtual characters of the story, while
the characters are also engaged in interaction among
themselves.

*This research was conducted at ATR Media Integration
& Communication Research Laboratories; the author was
supported by a Starr grant from the MIT/Japan Program
and by ATR Research Laboratories.

Kenji Mase
ATR-MIC Research Lab.
Seika-cho Soraku-gun
Kyoto 619-02 — Japan
+81 774 95 1440

mase@mic.atr.co.jp

Aaron Bobick
MIT Media Laboratory
20 Ames St. — E15-384B
Cambridge MA 02139 - USA
+1 617 253 8307

bobick@media.mit.edu

We are particularly interested in developing a
paradigm for scripting story-based interactive systems
which can handle progression through time. That is,
we want the behavior of the characters and the devel-
opment of the story to depend on the past interaction.
This paper describes a script paradigm based on Allen’s
time intervals ([1]) which can be employed by an inter-
action manager by using the PNF calculus of Pinhanez
and Bobick ([6]).

We start by detailing some of the fundamental the-
oretical concepts behind the proposed script paradigm
and its realization in the interaction manager. We then
describe some of the issues involved in the implemen-
tation of such interaction manager, and our experience
using the manager in a real system.

MOTIVATIONS

A long term objective of this research is to create 1m-
mersive, intcractive environments which capture the in-
tensity and dramaticity ol good stories. These environ-
ments can be either experienced directly by the user,
as in the interactive cinema concept proposed by Tosa
and Nakatsu ([8]); or employed in a computer theater
performance, as described by Pinhanez [5]. With only a
few exceptions (for example, [3]), immersive interactive
environments have been ezploratory, 1.e., the user’s ba-
sic objective is to navigate through an artificial world,
discovering its interesting features and/or meeting with
virtual creatures. We believe that immersive systems
can be significantly enriched by incorporating dramatic
structure from stories.

To enable the design of such environments, many
technological developments are necessary: umprovement
of sensing technology, human action understanding,
wireless interfaces, etc. But it is also fundamental to
develop paradigms and tools for scripting systems and
stories able to handle a variety of interaction situations.
Most story-based environments till now have relied on
scripts which are either reactive or shaped in a tree-like
structure. In reactive systems, the story (if it exists at
all) unfolds as a result of the firing of behaviors as a
response to the user’s actions (for example, [4, 7]). In
ree-like scripts, the user typically chooses between dif-
ferent paths in the story through some selective action
(for example, [3]).

Those scripting methods are not good for describing

A
——— e
B
A A
e N | e
-B_- A BEFOREB -T- A iBEFORE B
A A
e e
—— A MEET B — A iMEET B
A A
-] | ———
— A CVERLAP B —— A iOVERLAP B
—— e —
—?_ A DURING B —-B—— A iDURING B
A A
e —]
—?— A STarRT B —— A iSTART B
— —— e —
—?— A FINISH B —— A iFINISH B

Figure 1. The possible 13 primitive time relationships
between 2 intervals [1].

and managing the complex interactivity we are plan-
ning for our future immersive environments. It is hard
to express progression of time in creatures controlled by
reactive systems, and handling parallel events in a tree-
like, multiple choice script is cumbersome. In the fol-
lowing section, we propose a scripting paradigm which
has the potential to handle multi-pattern interaction in
story and scenario-based interactive environments.

INTERVAL SCRIPTS

An interval script is a low level interactive script
paradigm based on explicit declaration of the relation-
ships betwecen the time intervals corresponding to ac-
tions and to sensor activities. In an interval script, the
designer of the interactive system declares the time in-
tervals corresponding to the different actions and events
and the time relationship between some of those pairs of
intervals, 1.e., whether two intervals happen in sequence,
overlap, or are mutually exclusive. No explicit time rel-
erences are needed, for either duration, start, or finish
ol an interval. Examples of interval scripts are provided
later in this paper.

Allen’s Interval Algebra

To model the time relationships between two intervals
we employ the interval algebra proposed by Allen [1].
The mterval algebra is based on the 13 possible primi-
tive relationships between two intervals which are sum-
marized in fig. L. In any actual situation, two intervals
relate to each other exactly as described by one of the
possible primitive time relationships.

Given two situations in the real world, their possible
time relationship can always be described by a disjunc-
tion of the primitive time relationships. For instance, we
can say that the action of driving a car either STARTS
or FINISHES or happens DURING or is EQUAL to
the interval when the car engine is turned on. That
1s, the time relationship between driving and having a
car engine on can be described by the disjunction of

{START,DURING, FINISH, EQUAL}. Of course, in a real
occurrence of a driving action, only one of the relation-
ships actually happens.

Most of the interest in Allen’s representation for time
intervals comes from a mechanism by which the time re-
lationships between the pairs of intervals can be prop-
agated through the collection of all intervals. For in-
stance, if interval A is BEFORE B, and B is BEFORE
C, Allen’s representation enables the inference that 4
is BEFORE C. In fact, [L] provides an algorithm, later
revised by [9], which propagates the time relations
through a collection of intervals, determining the most
constrained disjunction of relationships for each pair of
intervals which satisfies the given relationships and is
consistent in time.

There are many reasons to use Allen’s algebra to de-
scribe relationships between intervals. First, no explicit
mention of the interval duration or specification of rela-
tions between the interval's extremities is required.

Second, the existence of a time constraint propaga-
tion algorithm allows the designer to declare only the
relevant rclations, leading to a cleaner script. Allen’s
algorithm is able to process the definitions and to gen-
erate a constrained version which defines only the scripts
which satisfy those relations and are consistent in time.

Third, the notion of disjunction of interval relation-
ships can be used to declare multiple paths and inter-
actlons in an story. As we mentioned before, any in-
stance of an actual interaction determines exactly one
relationship for each pair of intervals. Thus, we can see
the interval script as the declaration of a graph struc-
turc where each node is an interval, and whose links are
constrained by the structure of time. An interval script
describes a space of stories and interactions.

Tourth, it i1s possible to determine whether an interval
is or should be happening by properly propagating oc-
currence information from one interval to the others as
described in the next section. In other words, it is pos-
sible to conslruct an interaction manager which takes
relationships between intervals as a description of the
interaction to occur and which by getting input from
sensing routines can determine which parts of the script
arc occurring, which are past, and which are going to
happen in the future.

RUN-TIME MANAGEMENT OF INTERVAL SCRIPTS

Allen’s interval algebra describes a way by which the
relationships between intlervals can be propagated by a
transitive rule. To use the relations between intervals
in a system to manage real-time interaction we employ
the PNI calculus developed by Pinhanez and Bobick
[6] which defines a method for propagating occurrence
information through a network of intervals.

Although the PNF calculus makes the essential link
between the concept of interval and current time, all the
PNF-related concepts are completely transparent for the
designer of an interactive application: an interval script
talks about the activity of actuators and sensors in the
real world, and how they interact locally. However, to
understand how it is possible to represent and detect the

A MEET B

-A— B —L— B
[S [=

PAST --— NOW PAST 5 PN

A BEFORE B

-—A—— B -—A- B
[W= [W=

PAST -« NOW PAST —» PNF

Figure 2: Examples of PNF value propagation using
the PNF-restriction algorithm. Two different cases are
exemplified: in the first, A MEET B; in the second, A
BEFORE B.

current situation within a script given the input of some
sensors and the information about the past interaction,
we describe briefly the principal concepts of the PNF
calculus in the following paragraphs.

PNF Calculus

The PNF calculus is based on the assignment of a primi-
tive state value, cither past (PAST), now (NOW), or fu-
ture (FUT), Lo each interval at each instant of time.
Those values correspond to the intuitive notion of inter-
val occurrence relatively to a given moment of time. To
match the structure of the interval relationships (which
uses disjunctions of primitive relationships), the current
state of cach interval can be characterized by a disjunc-
tion of possible primitive states, a PNF-state. There are
7 possible PNF-states: PAST, NOW, FUT, PN, PF. NF, or
PNF.

For instance, PN (PAST or NOW) describes the situa-
tion where it is known that the interval started some
time in the past but it 1s unknown if the interval has
already finished. PNF (PAST or NOW or FUT) stands for
the situation where no information about the interval is
presently known.

The PNF-restriction algorithm developed by Pinhanez
and Bobick [6] enables the propagation of known PNF-
states of some intervals through a network of intervals.
Typically in the cases described in this paper the cur-
rent PNF-state of some intervals are obtained by sen-
sor devices. By using the PNF-restriction algorithim, the
PNF-state of intervals related to actuators can be deter-
mined. Actuators in the NOW state are activated, and
those which are in the PAST state are disabled.

Figure 2 shows some simple examples of propagation
of values considering the relationship hetween two in-
tervals A and B. In the first case, A MEET B: if B is
NOW then it is clear that A is in the past (considering
that intervals are supposed not to contain the endpoint).
However, 1f it 1s known that 4 1s PAST, then we can onlvy
conclude that B is PAST or NOW that is, PN. In the scc-
ond case, if 4 BEFORE B, the information that 4 is PAST
1s virtually useless, since B may have already happened
(PAST) or be happening (NOW) or be in the future (FUT)

table of interval
relationships —
e

interaction manager
(PNF-restriction)

states
(t-1) states (t)
PNF-states
— [mow | ew | ewr | eF | | Fur | e |
script sensor actuator sensor
routine routine routine

Figure 3: Diagram of the interaction manager.

characterizing a PNF state.

in [6], Pinhanez and Bobick also discuss the idea of
time expanding a PNF-state. Basically, given the PNF-
state of an interval, the time expansion of the interval
is the PNF-state corresponding to possible states of that
interval in the next instant of time. If an interval is NOW,
in the next instant it may be NOW or PAST, or PN; il it
is PAST, it remains in PAST; if it is FUT it goes to NF.
A comprehensive description of the PNF-restriction algo-
rithm can be found in [6], together with some theorems
about its computational complexity and completeness.

Connecting to the Real World

According to our proposal of interval scripts, the in-
teraction of a system is described by intervals of time
and their relationships. Some intervals are connected
to sensors and some are connected to actuators. Con-
nectors with real world events are generally referred as
externals. In the interval script paradigm, the designer
has two basic tasks: to define the actual sensing and
actuating routines corresponding to different externals
and lo deterniine the relationships between the intervals
defined by those externals.

An external is the concept abstracting the internal
mechanisms required to run the different sensors and
actuators. In fact, an external seamlessly encapsulates
the connections between a designer’'s routine and the
PNF structurc used to manage the interaction. Quite
commonly more than one interval is associated to one
external, as shown later.

Figure 3 shows the basic structure of the interaction
manager. The script defines the relationships between
intervals, which are stored in a table, and uscd by the
interaction manager when running the PNF algorithm.
The interaction manager considers the PNF-state of all
intervals at time ¢ — 1 to compute the PNF-states at time
t. These values are converted — as discussed later —
and used to call the designer’s sensing and actuating
routines. The outputs of those routines are mapped
back into PNF-states of appropriate uitervals, completing
the cycle.

Sensors

In interactive environments, sensors can play the roles
of chooser, locator, valuator, etc. (see [2]). We have

Multiple events

- oFF | ON { OFF
activity
interval
event — —— —
interval NOT_HAPPEN |~ HAPPEN — NOT_HAPPEN F HAPPEN - NOT_HAPPEN

Trigger (activity MEET event)

. OFF b—— oN —
activity OFF
: —_—
interval —» |
event —» ——
interval NOT_HAPPEN |- HAPPEN- NOT_HAPPEN

Figure 4: Intervals associated with a sensor, in two dif-
ferent configurations.

analyzed and implemented only the binary case of a
chooser sensor, that is, a sensor which detects whether
something i1s happening or not. However, all sensors
have at least two time intervals naturally associated to
them: an activily interval which determines when the
sensor is active, and a even! interval which corresponds
to an occurrence of the sensor.

In the case of binary-choosing sensors, the designer
of the interactive system has to provide a routine which
receives as input a switching command (ON, OFF, RESET)
and returns one of the following 3 values: HAPPENING,
NOT-HAPPENING, or UNKNOWN. During the time the ac-
tivation interval is or may be happening (NOW, PN, NF),
the interaction manager sends an ON command to the
designer’s routine, and OFF otherwise.

The output of the sensing routine affects the state of
the event interval as follows:

HAPPENING: the event interval is set to the NOW state
by the interaction manager;

NOT-HAPPENING: the event interval is set to PF;
UNKNOWN: the event interval is set to PNF.

Figure 4 shows the intervals associated with a sensor.
In the top example, it 1s shown that the event interval
can occur many times while the activity interval is
in the NOW state (and therefore, sending ON messages to
the sensing routine). 'T'he second example shown in the
bottom of fig. 4 exemplify the case of triggers, which
turn on only once; this is achieved by automatically in-
corporating into the scripl the relationship stating that
the activity interval MEET the event interval.

Actuators

In the case ol actuators, the designer has to provide
a routine which accepts a switching command (ON,
OFF, RESET) and returns a state-descriptive message:
NOT-DOING, DOING, or DONE. The [eedback from the rou-
tine is important because actions in the real world have
their own timing and priority, independent of the desires
of the designer or of the script. A situation might call
for the playing of a sound, but the sound might be de-
layed by a network problem or might not happen at all,
if, for instance, another actuator has already grabbed
some required hardware connection.

1.

- — N | OFF

desired OFF ° 10

. ————————

interval —® _—

actual —p

interval NOT_DOING |———— DOING ——| DONE

Figure 5: Intervals associated with an actuator.

These characteristics of actuators arc reflected in our
system by associating two intervals Lo actuators: a de-
sired interval and an actuel interval. Figure 5 shows
the relationship between the intervals and the actuator
routine provided by the designer. When the desired in-
terval is happening (i.e., has value NOW), the interaction
manager sends ON messages to the designer’s routine.
When, and if the actuator goes on, the returning DOING
message moves the actual interval into the state NOW.

When the desired interval goes to PAST, the inter-
action manager starts sending an OFF message to the
actuator routine. However, the end of the actual in-
terval is decided by the routine itself: it may happen
before, at the same, or some time after the routine re-
ceives the OFF message, depending on the properties of
the device being controlled.

Another issue is what to do when the PNF-state of
the desired interval is PN, NF, PF. or PNF: should an
ON or an OFF message be scnt to the designer’s routine?
Our current solution is to make the designer define the
desired interval to be RELAXED or ANXIQUS. In the for-
mer case, only pure NOW PNF-states send an ON message;
in the later, any state containing NOW — except PNF—
starts the actuator’s routine.

Timers

Although the general objective of this proposal is to
write a script without explicit time references, somne-
times it is necessary to constrain the duration of an
action or a sensing activity. In our conceptualization,
a timer is a special case of an actuator, thus defining
desired and actual intervals. The desired interval is
used to turn the timer on and off; the actual interval
— especlally its end — can be used to trigger another
actions as the timer expires.

Running Cycle

Before the interaction manager can actually run the in-
teraction described by the interval script, Allen’s algo-
rithin must be executed to assure that the relalionships
between every two intervals is as restricted as possible.

Just before the interaction starts, the interaction
manager scts cvery interval state to PNF, except for the
special interval start, which is assigned the value NOW.
During run-time, the following basic cycle is repeated
till the special end interval becomes NOW:

at the beginning of each cycle, all designer’s routines
connected to externals are called, considering the PNF-
state of each interval to decide which of the switching
commands (0N, OFF, RESET) is passed to the routine.

2. the outputs of the designer’s routines, translated into
PNF-states are attributed to the appropriate interval
connected to each external;

3. intervals which are not connected to externals (if they
exist) have the values in the previous iteration fime-
expanded.

4. the PNF-restriction algorithm is applied, propagating
the current values of some intervals through the whole
network;

5. if the end interval is not NOW, the cycle is repeated.

According to this cycle, if an interval becomes PAST,
it remains with this value until the end of the run. This
information is used in the upcoming cycles, constrain-
ing the values of other intervals and making the system
progress through the story defined by the interval script.

Implementation

Allen’s interval algebra, the PNF-restriction algorithm,
and the “external” procedures have been implemented
in C++. In the current version of the interaction man-
ager, the designer’s routines are also written in Ct++,
including the declaration of externals and their relation-
ships. The interval script is simply a C++ file which uses
classes corresponding to the different externals.

Since the computational complexity of the PNF-
restriction algorithm is worst-case quadratic in the num-
ber of intervals — and linear in memory usage — ([6]),
the interaction manager can run the PNF-restriction al-
gorithin at intervals compatible with sensor accuracy.
Typically, we have been running a new cycle of the man-
ager al video rates, that is, 30 times a second.

AN EXPERIMENT: SingSong

The methodology and algorithms described 1n this pa-
per were tested In a story-based, interactive system
named SingSong. SingSong was designed to be enjoyed
both as an user experience and as a computer theater
performance. In the later case, as described by Pin-
hanez in [5]. our system provides computer-generated
partners to the human performer which are not only
reactive, but are also able to follow the script.

The transition between the performance and the user
mode 1s seamless. enabling the user Lo experience the
story as lived by the performer. Typically, a performer
is able to produce a more vivid and interesting result for
those observing from outside the system becanse she can
clearly react to the situations, and expressively displays
her emotions.

Figure 6 shows the basic structure of SingdSong: a
big video screen shows four computer graphics-animated
characters which can “sing” musical notes (as produced
by the synthesizer). A camera watches the user or per-
former, dectermining the position of her head, hands,
and feet. Those positions are recovered by the software
pfinder developed at the MIT Media Laboratory ([10]).

All the interaction 1s nonverbal: the user or performer
gestures and the CG-characters sing notes and move.
There 15 a CG-object — a pitching fork — which the

image
processing camera
{pfinder)

T

posmonall data

PNF-Based video
Interaction G | —— @
Manager engine
video

projector
MlDI\commands
o
sound speaker

synthesizer

perlormer

Figure 6: The basic setup of SingSong.

user employs during one of the scenes. Sounds ol ap-
plauses can also be generated by the system. SingSong
is an environment which immerses the user or performer
in a simple story which unfolds as the interaction pro-
ceeds:

Singers of a chorus (the CG-creatures) are animat-
edly talking to each other. The conductor enters,
and commands them to stop by raising her arms.
One of the singers — #1 — keeps talking, till the
conductor asks it to stop again. Singer#1 stops,
but complains (by ezpanding and grudging sounds).
The pitching fork appears and the conductor starts
to tune the chorus: she points to a singer, and
“hits” the pitching fork by moving her arm down.
Any singer can be tuncd at any time. However,
singer#1 does not get tuned: 1t keeps grving back
the conductor a wrong note till the conductor knees
down and pleads for ils cooperalion. After all the
singers are tuned, a song is performed. The con-
ductor controls only the tempo: the notes are played
as she moves her arms up. When the song is fin-
wshed, applause ts heard, and when the conduclor
bows back, the singers bow together with her. Just
after that, singer#1 provokes the conductor again,
and the singers go back 1o talking to each other.

Writing An Interval Script for SingSong

SingSong portrays a very simple, quasi-linear story. The
choice of a story with some linearity was intentional:
interval scripts are naturally fit to describe reactive en-
vironments, and we wanted to test the limits of the con-
cept in a very constrained interactive story. The [ollow-
ing paragraphs show some examples of how semi-linear
and parallel structures can be described by the interval
seript approach.

Commanding Multiple Characters

In the first scene of SingSong, singer#1 has a different
role than the other singers: it does not obey the con-
ductor promptly, and after being commanded to stop, 1t
complains. After the singers stop chatting, they start to
stare to the conductor following him around the space.

