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ABSTRACT

This paper proposes a notion of interaction corpus, a
captured collection of human behaviors and interactions
among humans and artifacts. Digital multimedia and
ubiquitous sensor technologies create a venue to capture
and store interactions that are automatically annotated.
A very large-scale accumulated corpus provides an im-
portant infrastructure for a future digital society for
both humans and computers to understand verbal/non-
verbal mechanisms of human interactions. The interac-
tion corpus can also be used as a well-structured stored
experience, which is shared with other people for com-
munication and creation of further experiences. QOur
approach employs wearable and ubiguitous sensors, such
as video cameras, microphones, and tracking tags, to
capture all of the events from multiple viewpoints simul-
taneously. We demonstrate an application of generating
a video-based experience summary that is reconfigured
automatically from the interaction corpus.

KEYWORDS: interaction corpus, experience captur-
ing, ubiquitous sensors

INTRODUCTION

‘Weiser proposed a vision where computers pervade our
environment and hide themselves behind their tasks[1].
To achieve this vision, we need a new HCI (Human-
Computer Interaction) paradigm based on embodied in-
teractions beyond existing HCI frameworks based on
desktop metaphor and GUIs (Graphical User Interfaces).
A machine-readable dictionary of interaction protocols
among humans, artifacts, and environments is necessary
as an infrastructure for the new paradigm.

As a first step, this paper proposes to build an interac-
tion corpus, a semi-structured set of a large amount of
interaction data collected by various sensors. We aim to
use this corpus as a medium to share past experiences
with others. Since the captured data is segmented into
primitive behaviors and annotated semantically, it is
easy to collect the action highlights, for example, to gen-
erate a reconstructed diary. The corpus can, of course,
also serve as an infrastructure for researchers to analyze
and model social protocols of human interactions.

Our approach for the interaction corpus is character-
ized by the integration of many sensors (video cameras
and microphones), ubiquitously set up around rooms
and outdoors, and wearable sensors (video camera, mi-
crophone, and physiological sensors) to monitor humans
as the subjects of interactions! . More importantly, our
gystem incorporates ID tags with an infrared LED (LED
tags) and infrared signal tracking device (IR tracker)
in order to record positional context along with au-
dio/video data. The IR tracker gives the position and
identity of any tag attached to an artifact or human in
its field of view. By wearing an IR tracker, a user's
gaze can also be determined. This approach assumes
that gazing can be used as a good index for human
interactions[2]. We also employ autonomous physical
agents, like humanoid robots(3], as social actors to proac-
tively collect human interaction patterns by intention-
ally approaching humans.

Use of the corpus allows us to relate the captured event
to interaction semantics among users by collaboratively
processing the data of users who jointly interact with
each other in a particular setting. This can be per-
formed without time-consuming audio and image pro--
cessing as long as the corpus is well prepared with fine-
grained annotations. Using the interpreted semantics,
we also provide an automated video summarization of

! Thraughout this paper, we use the term “ubiquitous” to de-
scribe sensors set up around the room and “wearable” to specify
sensors carried by the users.



individual users’ interactions to show the accessibility of
our interaction corpus. The resulting video summary it-
self is also an interaction medium for experience-sharing
communication.

CAPTURING INTERACTIONS BY MULTIPLE SENSORS

We developed a prototype a system for recording natural
interactions among multiple presenters and visitors in
an exhibition room. The prototype was installed and
tested in one of the exhibition rooms during our two-
day research laboratories’ open house.
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Figure 1: Architecture of the system for capturing in-
teractions.

Figure 1 illustrates the system architecture for collecting
interaction data. The system consists of sensor clients
ubiquitously set up around the room and wearable clients
to monitor humans as subjects of interactions. FEach
client has a video camera, microphone, and IR tracker,
and sends the data to the central data server. Some
wearable clients have physiological sensors.

Principal data is video data sensed by camera and mi-
crophone. Along the video stream data, IDs of the LED
tag captured by the IR trackers and physiological data.
are recorded in the database as indices of the video data.

The humanoid robots in the room record their own be-
havior logs and the reactions of the humans with whom
the robots interact.

RELATED WORKS

There have been many works on smart environments for
supporting humans in a room by using video cameras set
around the room, e.g., the Smart rooms[4], Intelligent
room[5}, AwareHomel[6], Kidsroom(7], and EasyLiving[8].
The shared goal of these works was recognition of human
behavior using computer vision techniques and under-
standing of the human'’s intention. On the other hand,
our interest is to capture not only an individual human'’s
behavior but also interactions among multiple humans
(networking of their behaviors). We then focus on the
understanding and utilization of human interactions by
employing an infrared ID system to simply identify the
human’s existence.

There also have been works on wearable systems for col-
lecting personal daily activities by recording video data,
e.g., (9] and [10]. Their aim was to build an intelligent
recording system used by single users. We, however, aim
to build a system collaboratively used by multiple users
to capture their shared experiences and promote their
further creative collaborations. By using such a system,
our experiences can be recorded by multiple viewpoints
and individual viewpoints will become obvious.

This paper shows a system that automatically generates
video summaries for individual users as an application
of our interaction corpus. In relation to this system,
some systems to extract important scenes of a meeting
from its video data were proposed, e.g., [11]. These sys-
tems extract scenes according to changes in the physical
quantity of video data captured by fixed cameras. On
the other hand, our interest is not to detect the changes
of visual quantity but to segment human interactions
(perhaps derived by the humans’ intentions and inter-
ests), and then extract scene highlights from a meeting
naturally.

IMPLEMENTATION

Figure 2 is a snapshot of the exhibition room set up for
recording an interaction corpus. There were five booths
in the exhibition room. Each booth had two sets of
ubiquitous sensors that include video cameras with IR
trackers and microphones. LED tags were attached to
possible focal points for social interactions, such as on
posters and displays.

Each presenter at their booth carried a set of wearable
sensors, including a video camera with an IR tracker,
a microphone, an LED tag, and physiological sensors
(heart rate, skin conductance, and temperature). A vis-
itor could choose to carry the same wearable system as
the presenters, just an LED tag, or nothing at all.

One booth had a humanoid robot for its demonstration
that was also used as an actor to interact with visitors
and record interactions using the same wearable system
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Figure 2: Setup of the ubiquitous sensar room.

as the human presenters.

The clients for recording the sensed data were Windows-
based PCs. In order to incorporate data from multiple
sensor sets, time is an important index. We installed
NTP (Network Time Protocol) to all the client PCs to
synchronize their internal clocks within 10ms.

Recorded video data were gathered to a UNIX file server
via samba server. Index data given to the video data
were stored in an SQL server (MySQL) running on an-
other Linux machine. In addition, we had another Linux-
based server, called an application server, for generating
a video-based summary by using MJPEG Tools? .

At each client PC, video data was encoded into MIJPEG
(320 x 240 resolution, 15 frames per second) and audio
data was recorded in PCM 22 KHz 16 bit monaural.

Figure 3 shows the prototyped IR tracker and LED tag.
The IR tracker consists of a CMOS camera for detect-
ing blinking signals of LED and a micro computer for
controlling the CMOS camera. The IR tracker was em-
bedded in a small box with another CCD camera for
recording video contents.

Each LED tag emits a 6-bit unique ID, allowing for 64
different IDs, by rapidly flashing. The IR trackers rec-

2A get of tools that can do cut-and-paste editing
and MPEG compression of audio and video under Linux.
http:/ /mjpeg.sourceforge.net
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Figure 3: IR tracker and LED tag.

ognize IDs of LED tags within their view in the range
of 2.5 meters, and send the detected IDs to the SQL
server. Each tracker data consists of spatial data, the
two-dimensional coordinate of the tag detected by the
IR tracker, and temporal data, the time of detection, in
addition to the ID of the detected tag (see Figure 4).

A few persons attached three types of physiological sen-
sors — a pulse physiology sensor, skin conductance sen-
gor, and temperature sensor — to their fingers® These

3 We used Procomp+ as an AD converter for transmitting



] TIME X ¥
4 1036571603.137000 61 129
60 LE3ES5T1600.448000 1/ B
4 L36571603.878000 61 228
60 LIIESTI604319000 14
4 LO3E571604.659000 a2 17
60 1036571605.440000 13 n
60 1036571605,791000 150 28
60 106571606.131000 143 30
4 1006571606.472000 & 10
60 1008571607.163000 150 30
60 1M6571604.074000 150 30
60 1036371608.363000 148 20
60 1006571608.725000 146 28
4 1008571609.066000 65 118

Figure 4: Indexing by visual tags.

data were also sent to the SQL server via the PC.

Eighty users participated during the two-day open house
providing ~ 300 hours of video data, 380,000 tracker
data along with associated physiological data. The ma-
jor advantage of the system is the relatively short time
required in analyzing tracker data compared to process-
ing audio and images of all the video data.

INTERPRETING INTERACTIONS

To illustrate how our interaction corpus may be used,
we constructed a system to provide users with a per-
sonal summary video at the end of their touring of an
exhibition room on the fly. We developed a method to
segment interaction scenes from the IR tracker data. We
defined interaction primitives, or “events”, as significant
intervals or moments of activities. For example, a video
clip that has a particular object (such as a poster, user,
etc.) in it constitutes an event. Since the location of
all objects is known from the IR, tracker and LED tags,
it is easy to determine these events. We then interpret
the meaning of events by considering the combination
of objects appearing in the events,

Figure 5 illustrates basic events that we considered.

stay A fixed IR tracker at a booth captures an LED
tag attached to a user: the user stays at the booth.

coexist A single IR tracker captures LED tags attached
to different users at some moment: the users coezist in
the same area.

gaze An IR tracker worn by a user captures an LED
tag attached to someone/something: the user gazes at
someone,/something.

attention An LED tag attached to an object is simul-
taneously captured by IR trackers worn by two users:

sensed signals to the carried PC.
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Figure 5: Interaction primitives.

the users jointly pay aftention to the object. When
many users pay attention to the object, we infer that
the object plays a socially important role at that mo-
ment.

facing Two users’ IR trackers detect each others’ LED
tags: they are facing each other.

Raw data from IR trackers are just a set of intermit-
tently detected IDs of LED tags. Therefore, we first
group the discrete data into interval data implying that
a certain LED tag stays in view for a period of time.
Then, these interval data are interpreted as one of the
above events according to the combination of entities
attached by the IR tracker and LED tag.

In order to group the discrete data into interval data, we
assigned two parameters, minInterval and mazInterval.
A captured event is at least minInterval in length, and
times between tracker data that make up the event are
less than mazInterval. The minlnterval allows elimina-
tion of events too short to be significant. The mazInter-
val value compensates for the low detection rate of the
tracker; however, if the mazInterval is too large, more
erroneous data will be utilized to make captured events.
The larger the minInterval and the smaller the mazin-
terval are, the fewer the significant events that will be
recognized.

For the first prototype, we set both the minInterval and
maozInterval at b sec. However, a 5 sec mazlnterval was
too short to extract events having a meaningful length
of time. As a result of the video analyses, we found an
appropriate value of mazinterval: 10 sec for ubiquitous
sensors and 20 sec for wearable sensors. The difference
of mazInierval values is reasonable because ubiquitous
sensors are fixed and wearable sensors are moving.




VIDEO SUMMARY

We were able to extract appropriate “scenes” from the
viewpoints of individual users by clustering events hav-
ing spatial and temporal relationships.
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Figure 6: Interpreting events to scenes by grouping
spatio-temporal co-occurences.

A scene is made up of several basic interaction events
and is defined based on time. Because of the setup of
the exhibition room, in which five separate booths had
a high concentration of sensors, scenes were location-
dependent to some extent as well. Precisely, all the
events that overlap at least minInterval / 2 were con-
sidered to be a part of the same scene (see Figure 6).

Scene videos were created in a linear time fashion using
only one source of video at a time. In order to decide
which video source to use to make up the scene video, we
established a priority list. In creating the priority list,
we made a few assumptions. One of these assumptions
was that the video source of a user associated with a cap-
tured event of UserA shows the close-up view of UserA.
Another assumption was that all the components of the
interactions occurring in BoothA are captured by the
ubiquitous cameras set up for BoothA.

The actual priority list used was based on the following
basic rules. When someone is speaking (the volume of
the audio is greater than 0.1 / 1.0), a video source that
shows the close-up view of the speaker is used. If no one
that is involved in the event is speaking, the ubiquitous
video camera source is used.

Figure 7 shows an example of video summarization for a
user. The summary page was created by chronologically
listing scene videos, which were automatically extracted
based on events (see above). We used thumbnails of
the scene videos and coordinated their shading based
on the videos' duration for quick visual cues. The sys-
tem provided each scene with annotations, i.e., time,
description, and duration. The descriptions were auto-
matically determined according to the interpretation of
extracted interactions by using templates, as follows.

TALKED WITH I talked with [someone].
WAS WITH I was with [someone].
LOOKED AT I looked at [something].

In the time intervals where more than one interaction

event has occurred, the following priority was used: TALKED

WITH > WAS WITH > LOOKED AT.

We also provided a summary video for a quick overview
of the events the users experienced. To generate the
summary video, we used a simple format in which at
most 15 seconds of each relevant scene was put together
chronologically with fading effects between the scenes.

The event clips used to make up a scene were not re-
stricted to those captured by a single resource (video
camera and microphone). For example, for a summary
of a conversation TALKED WITH scene, the video clips
used were recorded by the camera worn by the user
him/herself, the camera of the conversation partner, and
a fixed camera on the ceiling that captured both users.
Our system selects which video clips to use by consult-
ing the volume levels of the users’ individual voices. The
worn LED tag is assumed to indicate that the user’s face
is in the video clip if the associated IR tracker detects it.
Thus, the interchanging integration of video and audio
from different worn sensors could generate a scene of a
speaking face by camera with a clearer voice by his/her
microphone.

CORPUS VIEWER: TOOL FOR ANALYZING INTERACTION
PATTERNS

The video summarizing system was intended to be used
as an end-user application. Our interaction corpus is
also valuable for researchers to analyze and model hu-
man social interactions. In such a context, we aim to
develop a system that researchers (HCI designers, so-
cial scientists, etc.) can query for specific interactions
quickly with simple commands that provides enough
flexibility to suit various needs. To this end, we pro-
totyped a system called the Corpus Viewer, as shown in
Figure 8.

This system first visualizes all interactions collected from
the viewpoint of a certain user. The vertical axis is time.
Vertical bars correspond to IR trackers (red bars) that
capture the selected user’s LED tag and LED tags (blue
bars) that are captured by the user’s IR tracker. Many
horizontal lines on the bars imply IR tracker data.

By viewing this, we can easily grasp an overview of the
user’s interactions with other users and exhibits, such as
mutual gazing with other users and staying at a certain
booth. The viewer’s user can then select any part of the
bars to extract a video corresponding to the selected
time and viewpoint.
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Figure 7: Automated video summarization.

We have just started to work together with social sci-
entists to identify patterns of social interactions in the
exhibition room using our interaction corpus augmented
by the Corpus Viewer. The social scientists actually
used our system to roughly estimate sufficient points
from a large amount of data by browsing clusters of IR
tracking data.

CONCLUSIONS

This paper proposed a method to build an interaction
corpus using multiple sensors either worn or placed ubiq-
uitously in the environment. We built a method to seg-
ment and interpret interactions from huge collected data
in a bottom-up manner by using IR tracking data. At
the two-day demonstration of our system, we were able
to provide users with a video summary at the end of
their experience on the fly. We also developed a proto-
type system to help social scientists analyze our interac-
tion corpus to learn social protocols from the interaction
patterns.
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